
into it, hoping to stumble on a good material, gets you nowhere. But once a
small number of potential candidates have been identified by the screening–
ranking steps, detailed documentation can be sought for these few alone, and
the task becomes viable.

Documentation for materials for the helmet visor
At this point it helps to know how the three top-ranked candidates listed in the last examples
box are used. A quick web search reveals the following.

Polycarbonate
Safety shields and goggles; lenses; light fittings; safety helmets; laminated sheet for bullet-proof
glazing.

Cellulose Acetate
Spectacle frames; lenses; goggles; tool handles; covers for television screens; decorative trim,
steering wheels for cars.

PMMA, Plexiglas
Lenses of all types; cockpit canopies and aircraft windows; containers; tool handles; safety spec-
tacles; lighting, automotive taillights.

This is encouraging: All three materials have a history of use for goggles and protective screen-
ing. The one that ranked highest in our list—polycarbonate—has a history of use for protective
helmets. We select this material, confident that with its high fracture toughness it is the best
choice.

Local conditions
The final choice between competing candidates will often depend on local
conditions: in-house expertise or equipment, the availability of local suppli-
ers, and so forth. A systematic procedure cannot help here; the decision must
instead be based on local knowledge. This does not mean that the result of
the systematic procedure is irrelevant. It is always important to know which
material is best, even if for local reasons you decide not to use it.

We explore documentation more fully later. Here we focus on the derivation
of property limits and indices.

5.3 MATERIAL INDICES
Constraints set property limits. Objectives define material indices, for which
we seek extreme values. When the objective is not coupled to a constraint,
the material index is a simple material property. When, instead, the two
[better] are coupled, the index becomes a group of properties like those
cited above. Where do they come from? This section explains.
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Think for a moment of the simplest of mechanical components. The loading
on a component can generally be decomposed into some combination of
axial tension, bending, torsion, and compression. Almost always, one mode
dominates. So common is this that the functional name given to the com-
ponent describes the way it is loaded: Ties carry tensile loads; beams and
panels carry bending moments; shafts carry torques; columns carry compres-
sive axial loads. The words “tie,” “beam,” “shaft,” and “column” each imply
a function. Here we explore constraints, objectives, and resulting material
indices for some of these.

The life energy and emissions for transport systems are dominated by the
fuel consumed during use. The lighter the system is made, the less fuel it
consumes and the less carbon it emits. So a good starting point is minimum
weight design, subject, of course, to the other necessary constraints, of which
the most important here have to do with stiffness and strength. We consider
the generic components shown in Figure 5.6: a tie, a panel, and beams,
loaded as shown.

Minimizing mass: A light, strong tie A design calls for a tie like those
of the biplane in the cover picture. It must carry a tensile force F* without
failure and be as light as possible (Figure 5.6(a)). The length L is specified
but the cross-section area A is not. Here, “maximizing performance” means
“minimizing the mass while still carrying the load F* safely.” The design
requirements, translated, are listed in Table 5.2.

Section area A Force F
Deflection δ

Lo

(a)

h

Force F

L

b

δ

(b)

L

Square section
area A = b2

b

Force F
b

δ

(c)
L

     section
area A Force F

b

δ

tw

(d)

FIGURE 5.6
Generic components: (a) a tie, a tensile component; (b) a panel, loaded in bending; (c) and (d) beams,
loaded in bending.
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We first seek an equation describing the quantity to be maximized or mini-
mized. Here it is the mass m of the tie and it is a minimum that we seek. This
equation, called the objective function, is

m = AL ρ (5.1)

where A is the area of the cross-section and ρ is the density of the material
of which it is made. The length L and force F are specified and are therefore
fixed; the cross-section A, is free. We can reduce the mass by reducing the
cross-section, but there is a constraint: A must be sufficient to carry
F*, requiring that

F*
A

≤ σf (5.2)

where σf is the failure strength. Eliminating A between these two equations
gives

ρ
σf

m≥ (F*)(L) Material properties

Functional constraint Geometric constraint

(5.3)

Note the form of this result. The first bracket contains the specified load F.
The second bracket contains the specified geometry (length L of the tie). The
last bracket contains the material properties. The lightest tie that will carry
F* safely2 is that made of the material with the smallest value of ρ/σf. We
could define this as the material index of the problem, seeking a minimum,
but it is more usual when dealing with specific properties to express them
in a form for which a maximum is sought. We therefore invert the material

Table 5.2 Design Requirements for the Light, Strong Tie

Function Tie rod
Constraints Length L is specified (geometric constraint)

Tie must support axial tensile load F * without failing
(functional constraint)

Objective Minimize the mass m of the tie
Free variables Cross-section area A

Choice of material

2 In reality a safety factor, Sf, is always included in such a calculation, so that Equation (5.2) becomes
F/A = σf/Sf. If the same safety factor is applied to each material, its value does not influence the
choice. We omit it here for simplicity.
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properties in Equation (5.3) and define the material index Mt (subscript t
for tie) as:

Mt1 =
σf
ρ

(5.4)

The lightest tie-rod that will carry F* without failing is that with the largest
value of this index, the “specific strength,” plotted in Figure 4.6. A similar
calculation for a light stiff tie (one for which the stiffness S rather then the
strength σf is specified) leads to the index

Mt2 = E
ρ

(5.5)

where E is Young’s modulus. This time the index is the “specific stiffness,”
also shown in Figure 4.6. The material group (rather than just a single prop-
erty) appears as the index in both cases because minimizing the mass m—
the objective—was coupled to the constraints of carrying the load F without
failing or deflecting too much.

Note the procedure. The length of the rod is specified but we are free to
choose the cross-section area A. The objective is to minimize its mass m. We
write an equation for m: It is the objective function. But there is a constraint:
The rod must carry the load F without yielding (in the first example) or
bending too much (in the second). Use this to eliminate the free variable A
and read off the combination of properties, M, to be maximized. It sounds
easy and it is, so long as you are clear from the start what the constraints
are, what you are trying to maximize or minimize, which parameters are
specified, and which are free.

That was easy. Now for some slightly more difficult (and important) examples.

Minimizing Mass: A light, stiff panel A panel is a flat slab, like a table
top. Its length L and width b are specified but its thickness is free. It is
loaded in bending by a central load F (see Figure 5.6(b)). The stiffness con-
straint requires that it must not deflect more than δ . The objective is to
achieve this with minimum mass, m. Table 5.3 summarizes the design
requirements.

Table 5.3 Design Requirements for a Light, Stiff Panel

Function Panel
Constraints Bending stiffness S* specified (functional constraint)

Length L and width b specified (geometric constraints)
Objective Minimize mass m of the panel
Free variables Panel thickness h

Choice of material
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The objective function for the mass of the panel is the same as that for
the tie:

m = AL ρ = b h L ρ

Its bending stiffness S must be at least S*:

S = C1EI
L3

≥ S* (5.6)

Here C1 is a constant that depends only on the distribution of the loads—
we don’t need its value (you can find it in Appendix B). The second
moment of area, I, for a rectangular section is

I = b h3

12
(5.7)

We can reduce the mass by reducing h, but only so far that the stiffness
constraint is still met. Using the last two equations to eliminate h in the
objective function gives

Material properties

Functional constraint Geometric constraints

12S*
C1b

m=
1/3 ρ

(bL2)
E1/3

(5.8)

The quantities S*, L, b, and C1 are all specified; the only freedom of choice
left is that of the material. The index is the group of material properties,
which we invert such that a maximum is sought: The best materials for a
light, stiff panel are those with the greatest values of

Mp1 = E1/3

ρ
(5.9)

Repeating the calculation with a constraint of strength rather than stiffness
leads to the index

Mp1 =
σ1/2y

ρ
(5.10)

These don’t look much different from the previous indices, E /ρ and σy /ρ,
but they are: They lead to different choices of material, as we shall see in a
moment.

Now for another bending problem in which shape plays a role.
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Minimizing mass: A light, stiff beam Beams come in many shapes:
solid rectangles, cylindrical tubes, I-beams, and more. Some of these have
too many free geometric variables to apply the previous method directly.
However, if we constrain the shape to be self-similar (such that all dimen-
sions of the cross-section change in proportion as we vary the overall size),
the problem becomes tractable again. We therefore consider beams in two
stages: first, we identify the optimum materials for a light, stiff beam of a
prescribed simple shape (a square section); second, we explore how much
lighter it could be made for the same stiffness by using a more efficient
shape.

Consider a beam of square section A = b × b that may vary in size but the
square shape is retained. It is loaded in bending over a span of fixed length
L with a central load F (see Figure 5.6(c)). The stiffness constraint is again
that it must not deflect more than δ under F, with the objective that the
beam should again be as light as possible. Table 5.4 summarizes the design
requirements.

Proceeding as before, the objective function for the mass is

m = AL ρ = b2 L ρ (5.11)

The bending stiffness S of the beam must be at least S*:

S = C2 EI
L3

≥ S* (5.12)

where C2 is a constant (Appendix B). The second moment of area, I, for a
square section beam is

I = b4

12
= A2

12
(5.13)

For a given L, S* is adjusted by altering the size of the square section. Now
eliminating b (or A) in the objective function for the mass gives

m = 12S*L3

C2

� �1/2

ðLÞ ρ

E1/2

� �
(5.14)

Table 5.4 Design Requirements for a Light, Stiff Beam

Function Beam
Constraints Length L is specified (geometric constraint)

Section shape square (geometric constraint)
Beam must support bending load F without deflecting too much,
meaning that bending stiffness S is specified as S* (functional
constraint)

Objective Minimize mass m of the beam
Free variables Cross-section area A

Choice of material
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The quantities S*, L, and C2 are all specified or constant; the best materials
for a light, stiff beam are those with the largest values of index Mb, where

Mb1 =
E1/2

ρ
(5.15)

Repeating the calculation with a constraint of strength rather than stiffness
leads to the index

Mb2 =
σ2/3y

ρ
(5.16)

This analysis was for a square beam, but the result in fact holds for any
shape so long as the shape is held constant. This is a consequence of Equa-
tion (5.13); for a given shape, the second moment of area I can always be
expressed as a constant times A2, so changing the shape just changes the
constant C2 in Equation (5.14), not the resulting index.

As noted above, real beams have section shapes that improve their
efficiency in bending, requiring less material to get the same stiffness. By
shaping the cross-section it is possible to increase I without changing A.
This is achieved by locating the material of the beam as far from the
neutral axis as possible, as in thin-walled tubes or I-beams (see Figure 5.6
(d)). Some materials are more amenable than others to being made into
efficient shapes. Comparing materials on the basis of the index in Mb

therefore requires some caution; materials with lower index values may
“catch up” by being made into more efficient shapes. We examine this in
more detail in Chapter 9.

Minimizing material cost: Cheap ties, panels, and beams When the
objective is to minimize cost rather than mass, the indices change again. If
the material price is Cm $/kg, the cost of the material to make a component
of mass m is just mCm. The objective function for the material cost C of the
tie, panel or beam then becomes

C = mCm = ALCm ρ (5.17)

Proceeding as before leads to indices that have the form of Equations (5.4),
(5.5), (5.9), (5.10), (5.15), and (5.16), with ρ replaced by Cm ρ. Thus the
index guiding material choice for a tie of specified strength and minimum
material cost is

M =
σf

Cm ρ
(5.18)
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where Cm is the material price per kg. The index for a cheap stiff panel is

Mp1 = E1/3

Cm ρ
(5.19)

and so forth (It must be remembered that the material cost is only part of
the cost of a shaped component; there is also the manufacturing cost—the
cost to shape, join, and finish it.)

Associating material indices with components The components in the
cover images of this chapter are labeled with the type of loading support
and with the index that guides the choice of material to make them. The
biplane typifies lightweight design, meaning that its materials are chosen to
carry the design loads at minimum mass. The airport structure uses very
large quantities of materials: Here the objective is to carry the design loads
safely while minimizing the cost of the material. The guiding indices for
each structure are derived from a single objective: minimizing mass in one
case, minimizing material cost in the other. Often a design involves more
than one objective: in choosing materials for the frame of a bicycle you
might wish to minimize both the weight and the cost. That requires trade-
off methods, the subject of Chapter 7.

How general are material indices?
This is a good moment to describe the method in more general terms. Struc-
tural elements are components that perform a physical function: They carry
loads, transmit heat, store energy and so on. In short, they satisfy functional
requirements. We have already identified examples: A tie must carry a specified
tensile load; a spring must provide a given restoring force or store a given
energy; a heat exchanger must transmit heat with a given heat flux, and so on.

The performance of a structural element is determined by three things: the
functional requirements, the geometry, and the properties of the material of
which it is made.3 The performance P of the element is described by an
equation of the form

P =

"�
Functional

requirements, F

�
,
�

Geometric
parameters,G

�
,
�

Material
properties,M

�#

or

P = f ðF,G,MÞ (5.20)

3 In Chapter 9 we introduce a fourth: section shape.
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where P, the performance metric, describes some aspect of the performance
of the component: its mass, volume, cost, or life, for example; and f means
“a function of.” Optimum design is the selection of the material and geometry
that maximize or minimize P, according to its desirability or otherwise.

The three groups of parameters in Equation (5.20) are said to be separable
when the equation can be written

P = f1ðFÞ . f2ðGÞ . f3ðMÞ (5.21)

where f1, f2, and f3 are separate functions that are simply multiplied together.
It turns out that, commonly, they are. When this is so the optimum choice of
material becomes independent of the details of the design; it is the same for
all geometries, G, and for all values of the function requirement, F. Then the
optimum subset of materials can be identified without solving the complete
design problem, or even knowing all the details of F and G. This enables
enormous simplification: The performance for all F and G is maximized by
maximizing f3 (M), which is called the material efficiency coefficient, or mate-
rial index for short. The remaining bit, f1 (F) · f2 (G), is related to the structural
efficiency coefficient, or structural index. We don’t need it now, but we will
examine it briefly in Section 5.6.

Each combination of function, objective, and constraint leads to a material
index (Figure 5.7); the index is characteristic of the combination and thus of
the function the component performs. The method is general and, in later

Functions

Tie

Beam

Shaft

Column

Mechanical,
thermal,

electrical ...

Constraints

Stiffness
specified

Failure load
specified

Fatigue life
specified

Geometry
specified

Minimize this
(or maximize
reciprocal)

Minimize cost

Minimize mass

Maximize energy
storage

Minimize
environmental

impact

Objectives

Index

M = ρ / E1/2

FIGURE 5.7
The specification of function, objective, and constraint leads to a materials index. The combination in
the highlighted boxes leads to the index E1/2/ρ.
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chapters, is applied to a wide range of problems. Table 5.5 gives examples of
indices and the design problems that they characterize. A fuller catalog of
indices is given in Appendix C. New problems throw up new indices, as the
case studies of the next chapter will show.

5.4 THE SELECTION PROCEDURE
We can now assemble the four steps into a systematic procedure.

Translation and deriving the index
Table 5.6 lists the steps. Simplified: Identify the material attributes that are
constrained by the design, decide what you will use as a criterion of excel-
lence (to be minimized or maximized), substitute for any free variables
using one of the constraints, and read off the combination of material prop-
erties that optimize the criterion of excellence.

Screening: Applying attribute limits
Any design imposes certain non-negotiable demands (“constraints”) on the
material of which it is made. We have explained how these are translated

Table 5.5 Examples of Material Indices

Function, Objective, and Constraints Index

Tie, minimum weight, stiffness prescribed E
ρ

Beam, minimum weight, stiffness prescribed E1=2

ρ

Beam, minimum weight, strength prescribed σ2=3y

ρ

Beam, minimum cost, stiffness prescribed E1=2

Cmρ

Beam, minimum cost, strength prescribed σ2=3y

Cmρ

Column, minimum cost, buckling load prescribed E1=2

Cmρ

Spring, minimum weight for given energy storage σ2y
E ρ

Thermal insulation, minimum cost, heat flux prescribed 1
λCpρ

Electromagnet, maximum field, temperature rise prescribed Cp ρ
ρe

ρ = density; E = Young’s modulus; σy = elastic limit; Cm = cost/kg; λ = thermal conductivity;
ρe = electrical resistivity; Cp = specific heat
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